Turret 6 # 6-Position Temperature-Controlled Cuvette Turret for UV/Vis Spectrophotometry Manual & Product Overview 3/18/2015 **TC 1** Temperature Controller # **TABLE OF CONTENTS** | Ta | able of Contents | 2 | |----|--------------------------------------------------------------------|-----| | 1. | . GETTING STARTED | 3 | | | A. YOUR SHIPMENT WILL CONTAIN: | 3 | | | Turret 6 package | 3 | | | B. DEPENDING ON YOUR ORDER, THE SHIPMENT MAY ALSO CONTAIN: | 3 | | | BATH 10 | 3 | | | T-App software | 3 | | | C. SYSTEM SETUP | 4 | | | D. SOFTWARE INSTALLATION | 4 | | | E. SYSTEM OPERATION | 4 | | 2. | . Using the MenU BUTTON | 6 | | 3. | . Features of the Turret 6 | 8 | | | A. GENERAL DESCRIPTION | 8 | | | B. CUVETTE HOLDER | 9 | | | C. CUVETTE Z-HEIGHT | 9 | | | E. COOLING WATER FOR THE PELTIER | 10 | | | F. DRY GAS TO MINIMIZE CONDENSATION | 11 | | | G. EXTERNAL TEMPERATURE PROBE | 11 | | | H. EXTERNAL COMPUTER CONTROL | 11 | | 4. | . Error Codes | 11 | | | E5– cell out of range | 11 | | | E6 – cell out of range | 12 | | | E7 – heat exchanger error | 12 | | | E8 – inadequate coolant | 12 | | 5. | . Turret 6 Specifications | 13 | | ٨٠ | nnandiv: Sarial Communications for the TC 1 Tamperature Controller | 1/1 | # 1. GETTING STARTED Thank you for purchasing a Quantum Northwest *Turret* 6. We want you to enjoy many years of faithful service from your instrument. If you have any questions, feel free to contact us directly through our web site: www.qnw.com. # A. YOUR SHIPMENT WILL CONTAIN: # Turret 6 package - 1. **Turret** 6 cuvette holder, mounted on a base for the Agilent Cary 50 or Cary 60 spectrophotometer - 2. TC 1 Temperature Controller - 3. power cable - 4. USB cable - 5. 6 magnetic stir bars - 6. vinyl tubing to connect water and gas # B. DEPENDING ON YOUR ORDER, THE SHIPMENT MAY ALSO CONTAIN: #### **BATH 10** - 1. submersible pump adapted to 1/8-inch ID tubing - 2. plastic bucket # **T-App software** **T-App**, provided on a CD, is a program that permits external computer control of the **TC 1** Temperature Controller. The temperature of the sample holder and a temperature sensed by an external probe may be plotted vs time. Simple text scripts may be used to automate multiple operations. ### C. SYSTEM SETUP - 1. Install the *Turret* 6 in your spectrometer. (It may have been already installed by the manufacturer.) - 2. Supply circulating water to the Peltier unit. If you purchased the **BATH 10**, then attach tubing from the submersible pump to either one of the water hose barbs on the *Turret* 6. Attach another piece of tubing from the *Turret* 6 back to the bucket. Put water in the bucket, turn on the pump by plugging it into an outlet and check to be sure that water is flowing back into the bucket. Check for leaks. Unplug the pump until you have completed the remainder of the system set up. - 3. If you plan to work at low temperatures, connect a source of dry gas (typically nitrogen) to release on the cuvette windows. Attach a length of tubing with 1/16-inch inside diameter, to the small hose barb on the base of the *Turret* 6. (A 1/8 to 1/16-inch barbed reducer fitting is included with the *Turret* 6, to prevent any difficulty connecting to this unusually small size tubing.) Set the dry gas flow rate to about 50 cc/min. - 4. The *Turret* 6 has two electrical cables, one for drive currents and the other for sensitive sensor signals. Connect them to the back of the **TC 1** Temperature Controller on the 15-pin connectors labeled "Sample" and "reference". - 5. Plug the power cable into the back of the **TC 1** Temperature Controller and into a wall socket. (The **TC 1** will accept AC voltages from 85 to 264 at 50 or 60 Hz.) #### D. SOFTWARE INSTALLATION NOTE: IF YOU PURCHASED THE T-App PROGRAM, DO NOT PLUG IN THE USB CABLE INTO YOUR COMPUTER UNTIL THE SOFTWARE IS LOADED. IF YOU DO, WINDOWS MAY AUTOMATICALLY INSTALL AN INCORRECT DRIVER THAT WILL BE DIFFICULT TO REMOVE. - If you purchased the **T-App** program for external control of the *Turret* 6, insert the CD into the drive. If the installation does not start automatically, locate the Setup.exe file in the root directory and run it. The installation process starts with a small black window that is shown during installation of the drivers needed to control the *Turret* 6 through a USB connection. This window will then be replaced by the software installation window. Follow the onscreen prompts to complete the installation. - 2. Connect the **Turret** 6 to your computer using the USB cable provided. The New Hardware installation process will begin automatically and take a few moments to finish. # **E. SYSTEM OPERATION** - 1. Use a liquid samples in standard 1 x 1-cm square cuvettes and place the cuvettes in the **Turret** 6. - 2. Place the magnetic stir bar in each cuvette. - 3. If you wish to monitor the temperature inside a cuvette, plug a standard Series 400 or Series 500 thermistor probe (not provided) into the ¼ inch phone jack labeled "probe" in the back panel of the **TC 1**. Place the end of the probe in a region of the solution, where it will not occlude the spectrometer light beam. - 4. Turn on the circulating water. - 5. Turn on the **TC 1** controller using the switch on the back panel. Menu Button - 6. **Brief Instructions:** The controller display begins on the **Display** page. Use the left or right arrows on the Menu Button to cycle through the five pages of options, **Display** (the default screen), **Set Temperature**, **Set Stirring**, **Set Ramping**, and **Set Position**. For example, from the **Display** page, push the left arrow once to get to the **Set Position** page. Once there, use the top and bottom arrows to choose a position, e.g. position 5. Press the **SET** button. The cuvette holder will move to position 5 and the menu will return to the **Display** page. To set a temperature, press the right arrow once to go to the **Set Temperature** page. Once there, use the up and down arrows to set a target temperature, e.g. 37.0 °C. Press **SET** to initiate temperature control. The temperature will rise and stabilize, indicated by the change in the green LED light on the front panel from flashing to steady. To control stirring, go to the **Set Stirring** page. Use the up and down arrows to set a speed, e.g. 1200 rpm, and press **SET** to start the stirrer. **More details on the Menu Button are provided in Section 2 below.** - 7. After measurements are completed, turn off power on the back of the **TC 1** controller and turn off the water source. # 2. USING THE MENU BUTTON Use the right and left arrows to cycle through five pages: ``` - Display - Set Temperature - Set Stirring - Set Ramping - Set Position - Display ``` ``` Holder = 37.0 °C POS Target = 37.0 °C 1 Probe = 36.9 °C Ramp On Stir On ``` **Display:** This main page shows the actual cuvette *Holder* temperature, the *Target* temperature and a *Probe* temperature (if a probe is present). The page also shows whether the *Ramp* and *Stir* functions are on or off, and the identity of the cuvette *Position Number* (POS n, n=1 to 6) currently in the light pathway. After a few seconds of inactivity, all other pages will revert back to the **Display** page. When seeking a temperature, the green LED on the front panel will flash slowly. When it has locked onto a new target temperature, the green LED will remain lit. A rapidly flashing red LED usually means a loose electrical cable or inadequate water flow for the Peltier unit. **Note:** Pressing the **SET** button while the **Display** page is active results in no action. To start or stop controller functions, access the four other pages, **Set Temperature – Set Stirring – Set Ramping – Set Position.** ``` Set Temperature ``` ``` Set Temperature Target = 37.0 °C Current= 23.6 °C Off ``` **Set Temperature:** To set the *Target* temperature, use the up and down arrows. Press **SET** to retain this new *Target* and initiate temperature control. The green LED light will begin flashing slowly as the device seeks the targeted temperature, and the page window will show the *Curren*t to be *ON*. **Discontinue Temperature Control:** Press **SET** while the green LED light is lit or slowly flashing to discontinue temperature control. The LED light will turn off completely, and the page window will show the *Current* to be *Off*. ``` Set Stirring ``` ``` Set Stirring Stir speed = 1200 rpm Current = Off ``` **Set Stirring:** To turn on magnetic *Stirring*, use the up and down arrows to choose an approximate stirring speed between 1 and 2500 rpm. Press **SET** to set the speed and initiate stirring. The page will update to show the *Current* value to be the same as *Stir speed*. **Discontinue Stirring:** Press **SET** while the *Stirring* is on (shown by nonzero *Current* rpm) to turn the stirrer off. The page will update to show the *Current* speed to be *Off*. ``` Set Ramping ``` ``` Set Ramping Ramp = 0.55°/min Current = Off ``` **Set Ramping:** To perform a temperature ramp, set the *Ramp* rate using the up and down arrows, and press **SET**. The page will update to show the *Current* rate in °/min to be the same as the *Ramp* rate. With ramping set, turning on temperature control will generate a linear ramp to the target temperature. When the sample holder reaches the target temperature, no further temperature change occurs, although the *Current* rate will remain as set. The fastest possible ramp is determined by how fast the cuvette holder could reach the target temperature without ramping. Attempting to ramp too quickly, especially at high and low temperature extremes, will result in a nonlinear ramp. The slowest ramp that may be set on this page is 0.01 °C/minute. (If needed, much slower ramps may be set through software commands.) **Discontinue Ramping:** Press **SET** while the *Ramp* is on (shown by nonzero *Current* °/min) to turn the *Ramp* off. The page will update to show the *Current* rate to be *Off*. Set Position Target = 5 Current = 1 **Set Position:** To change the cuvette position, use the up and down arrows to choose the desired *Target* position and press **SET**. The controller will move the cuvette holder to the selected cuvette position, reflected by the value of *Current*. When the cuvette holder is powered on, the device homes to a starting point before seeking the targeted cuvette position. To manually home the device, push and hold the **SET** button for three seconds. This will home the cuvette holder before moving the device to the targeted position. # 3. FEATURES OF THE TURRET 6 #### A. GENERAL DESCRIPTION The **Turret** 6 has a rotating, temperature-controlled, cuvette tower which holds up to six cuvettes. The center of the tower is hollow, permitting light to pass into the entrance hole, through the tower, through a cuvette and exit the opposite side from the entrance. A plastic cover encloses the cuvette tower, providing thermal insulation. A floor is attached to the bottom of the cuvette tower, and the rotating body of the holder contains a Peltier element sandwiched between this floor and a brass heat exchanger. Water is put through the heat exchanger to draw off heat generated when the temperate is lowered. Figure 1. Turret 6 A miniature stepping motor is placed under each cuvette to drive rotating magnet and these six motors rotate with the Turret body. Dry gas may be directed next to the cuvette windows, both on the inside and the outside surfaces, to minimize condensation when working below the dew point temperature. The rotating body is mounted on a large precision bearing and rotated via gears, using a stepping motor. Figure 2. Back of the *Turret* 6 Two wires exit the stepping motor housing, one conducts the drive currents for the stepping motor and Peltier unit. The other conducts the more sensible sensor lines. The two brass 1/8-inch hose barbs for water provide access to the heat exchanger. A 1/8-inch stainless hose barb is used for the dry gas. The hoses to these connections and the power and sensor cable must be brought out of the sample compartment by a means that does not interfere with the spectroscopic measurement. Access for these utilities may need to be light tight. **CAUTION:** Accidently attaching a water line to the dry gas barb will severely damage the instrument! Attach the lines with care. # **B. CUVETTE HOLDER** The **Turret** 6 holds standard 10×10 mm cuvettes with outside dimensions of 12.5×12.5 mm. A metal clip is used to push each cuvette into one of the corners of its individual space for reproducible positioning and to favor temperature transfer. Walls of the Turret body are relieved to prevent scratching of the optical surfaces of the cuvette. Cuvettes should be 45 mm or taller, otherwise they will be difficult to recover from the cuvette holders. #### C. CUVETTE Z-HEIGHT The "z height" of a cuvette is the distance between the bottom surface of the cuvette and the designed position for the optical center line, where the incident beam of light strikes the cuvette. The z height for cuvettes in the *Turret* 6 is 15 mm. Figure 3. The z height of a typical microcuvette #### E. COOLING WATER FOR THE PELTIER The Peltier element (or "thermoelectric cooler") is a heat pump. When cooling, it transfers heat from the Turret body to a heat exchanger; when heating, electrical polarity is reversed and it transfers heat from the heat exchanger to the tower. When cooling, it is particularly important to transfer this heat away from the Peltier. This is accomplished with flowing water through the heat exchanger. A source of water (or other cooling fluid) must be connected to the %-inch hose barbs on the back of the *Turret* 6. If you purchase the **BATH 10** from us, you will get an inexpensive submersible aquarium pump, the appropriate fittings for connecting tubing, and a plastic bucket. Connect the pump to the *Turret* 6, place it in the bucket with water, and run a return tube to the bucket. A more robust pump is available as the **BATH 100** for a higher price, although the larger pump has a higher Wattage and tends to heat the water when used for extended periods of time. You may also provide the cooling water from another source, such as a refrigerated cooling bath or even a tap for brief use. You will need a flow of 100 - 300 ml/minute. This flow should require a pressure of about 3 - 5 psi (0.2 - 0.3 bar). Do not exceed an input water pressure of 25 psi (1.7 bar), as damage may occur inside the *Turret* 6. The heat exchanger and hose barbs are brass, and the tubing inside the *Turret* 6 is vinyl. Be sure that any circulating fluid used, other than water, will not corrode these materials. The temperature of the heat exchanger in the *Turret* 6 is monitored using a thermistor. If the temperature exceeds 60 °C, then temperature control is shut down to prevent damage to the Peltier element and the warning, "check coolant flow," displayed on the **TC 1** temperature controller. This will happen if the circulating fluid gets too warm and/or is restricted in flow. The heat exchanger temperature may be accessed by computer through the RS 232 or USB connections on the back of the **TC 1** Temperature Controller (see External computer control below). Temperature increases will be faster when room temperature water is used in the circulator. Temperature decreases will be faster when ice water is used. Only water should be circulated using the **BATH 10**. When using a refrigerated bath, circulating pre-cooled fluids (such as 30% methanol or diluted ethylene glycol) at below 0 °C will permit measurements below the specified temperature range. ### F. DRY GAS TO MINIMIZE CONDENSATION Dry gas flows into the *Turret* 6 via the stainless 1/8-inch hose barb on the rear side. The gas passes through small channels in the base of the Turret body, to partially equilibrate in temperature, before passing up through small holes on both the inside and outside cuvette surfaces. A flow of dry gas to prevent condensation is necessary any time the *Turret* 6 is controlled below the dew point temperature present on the inside of the sample compartment of the spectrometer. For ambient air, this would typically be about 5 °C. #### G. EXTERNAL TEMPERATURE PROBE A ¼-inch phone jack labeled "Probe" can be found on the back panel of TC 1 Temperature Controller. This jack will accept the plug on a standard Series 400 or Series 500 thermistor probe. When a probe is plugged into the jack, the probe temperature is presented on the display of the TC 1. Place the probe in a sample to measure the actual temperature of the sample, which will lag in time from the temperature of the cuvette tower. We do not sell the probe, but there are many Series 400 and 500 probes on the market. Quantum Northwest's preferred probe is the YSI 423 available from Cole Parmer. The YSI 423 is reasonably resistant to immersion and responds rapidly to temperature changes. Also, the fine, coiled wires of the YSI 423 conduct very little ambient heat to the thermistor at the end. Excellent Series 500 probes can be obtained with diameters less than a mm, providing access to small volumes. A disadvantage of these probes is that they are not pre-calibrated. # H. EXTERNAL COMPUTER CONTROL All functions may be accessed either through a Serial (RS 232) or a USB located on the back of TC 1 Temperature Controller. You may write your own program or purchase our application program T-App. T-App will plot temperatures of the probe, cuvette tower or even the Peltier element heat exchanger vs time. It will also permit you to set up temperature ramps. If you wish to do your own programming, please see the Appendix for communication instructions and the set of text commands that may be used and responses to the commands. # 4. ERROR CODES When errors occur, the line 1 of the display presents an error code. Line 3 of the display identifies the error and line 4 of the display presents possible solutions. The most common events that cause errors to be displayed are loose cables or inadequate coolant flow. For errors not easily solved, please contact us through our website, www.qnw.com. # E5- cell out of range warnings: loose cable, sensor failure The temperature controller is not receiving a reasonable response from the sensor on the cuvette tower. Either the sensor has failed or a cable is not making a good connection. # E6 - cell out of range warnings: loose cable, check cable The temperature controller is not receiving reasonable responses from either the cell tower or heat exchanger sensors. Since it is very unlikely for both to fail, probably a cable is loose. # E7 – heat exchanger error warnings: loose cable, sensor failure The temperature controller is not receiving a reasonable response from the sensor on the heat exchanger. Either the sensor has failed or a cable is not making a good connection. # E8 - inadequate coolant warnings: inadequate coolant, water temperature The sensor on the heat exchanger is reading a temperature above 60 °C. Temperature control has been shut down to prevent damage to the Peltier element. Either the water was too warm or the rate of flow was inadequate to draw sufficient heat from the heat exchanger. # 5. Turret 6 SPECIFICATIONS $\begin{array}{ll} \text{temperature range} & -20 \text{ to +110 °C} \\ \text{temperature precision} & \pm 0.05 °C \end{array}$ cuvette size (outside dimensions) 12.5 x 12.5 mm minimum cuvette height 30 mm magnetic stirring speed 0 to 1700 rpm cuvette z height 8.5 or 15 mm (specified when ordering) optical port dimensions (mask) 10 mm high x 8 mm wide # APPENDIX: SERIAL COMMUNICATIONS FOR THE TC 1 TEMPERATURE CONTROLLER 7/26/2013 This document provides the serial communications protocols for version 1.0 of the firmware on the **TC 1** family of controllers: **TC 1**/t2 – for the t2, single temperature controller TC 1/t2x2 – for the t2x2, dual temperature controller for sample and reference TC 1/Turret 6 – for the Turret 6, 6-position turret The version number and the ID (see below) are shown briefly on the display when the temperature controller is turned on. All functions of the temperature controller can be managed from a computer, using the command set described below. If you purchased your unit as a component of a spectrometer from certain manufacturers, this feature may be implemented through traditional RS232 serial connectors on the computer or the spectrometer and on the controller. In this case they will be connected by a standard 15-pin serial extension cable (male connector on one end and female on the other). No driver installation should be needed. Otherwise the serial linkage will be established through a USB connection between the computer and the controller. In this case the controller includes electronics which convert the USB connection to a serial communications port. However, for the port to be available to programs on the computer it will be necessary to load driver software. It is important that the driver software be loaded before connecting a USB cable between the controller and the computer. Contact Quantum Northwest for further information. Quantum Northwest can provide a control program written specifically for control of all functions of the temperature controller. Ask for program T-App. In programming for the **TC 1** controller, one must adhere to the conventional notation: 8/N/1. Baud: 19200 Data Bits: 8 Parity: None Stop Bit: 1 Flow Control: None For many of the commands listed below the controller returns information in response to the command. All commands and responses are delineated by left and right square brackets ([]). Any text sent to the controller not enclosed within brackets will be ignored. In this document an ellipsis (.....) is used to distinguish responses from commands. | [command] | Purpose of the command (sent to the controller). | |------------|---------------------------------------------------------| | [response] | Meaning of the response (received from the controller). | [F1 ID ?] What is the ID number of the sample holder being controlled?[F1 ID 14] Sample holder is a **t2** or other single cuvette sample holder. #### Assigned Identities: ID = 00 – specialty sample holder (see command class 14) 14 - **t2** 24 - t2x2 34 - reserved for turret or linear multi-sample holder # 2. Controller Firmware Version [F1 VN ?] What is the version number of the controller firmware?[F1 VN 1.00] The controller is operating firmware version number 1.00. ### 3. Stirrer [F1 MS ?] What is the maximum stirrer speed?[F1 MS 2500] The maximum stirrer speed is 2500 rpm. [F1 LS ?] What is the lowest stirrer speed?[F1 MS 300] The lowest stirrer speed is 300 rpm. [F1 SS S 1000] Set stirrer speed to 1000 rpm. [F1 SS S 0] Turn stirrer off and set the speed to zero. [F1 SS +] Turn stirrer on and set it to the most recent non-zero stirrer speed setting. [F1 SS -] Turn stirrer off. [F1 SS ?] What is the current stirrer speed setting?[F1 SS 1000] Stirrer speed setting is 1000 rpm. #### 4. Temperature Control [F1 TC +] Turn temperature control on. [F1 TC -] Turn temperature control off. # 5. <u>Target Temperature</u> [F1 TT S 23.10] Set target temperature to 23.10 ºC. [F1 TT ?] What is the current target temperature?[F1 TT 71.32] Target temperature is 71.32 ºC. [F1 TT +] Turn on automatic reporting of manual changes to the target temperature. [F1 TT -] Turn off automatic reporting of manual changes to the target temperature. | [F1 MT ?] | What is the maximum target temperature allowed? | |-------------|---------------------------------------------------| | [F1 MT 110] | The maximum target temperature allowed is 110 °C. | | [F1 LT ?] | What is the lowest target temperature allowed? | | [F1 LT -30] | The lowest target temperature allowed is -30 °C. | # 6. Instrument Status | [F1 IS ?] | What is the current instrument status? | | | |------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | [F1 IS 0-+ | Response is four parameters: number of unreported errors is 0 (0 to 9) stirrer is off (+ is on, - is off) temperature control is on (+ is on, - is off) temperature is stable (S is stable, C is changing) | | | | [F1 IS +] | Automatically report instrument status whenever it changes (e.g., due to manual changes at the controller) | | | | [F1 IS -]
[F1 IS R] | Stop automatic reports of instrument status. The controller has been powered off and back on again. | | | # 7. <u>Current Sample Temperature</u> | [F1 CT ?] | Wha | t is the current temperature of the holder? | |------------|--------|---| | [F1 CT : | 22.84] | The current temperature is 22.84 °C. | | [F1 CT +3] | Perio | dically report current temperature every 3 seconds. | | [F1 CT -] | Stop | periodic current temperature reports. | # 8. Error Reporting | [F1 ER ?] | Report the current error. | |-------------|---| | [F1 ER -1] | No current error. | | [F1 ER 05] | Cell T out of range (Loose cable? Sensor failure?). | | [F1 ER 06] | Cell & heat exchanger T out of range (Loose cable?). | | [F1 ER 07] | Heat exchanger T out of range (Loose cable? Sensor failure?). | | [F1 ER 08] | Inadequate coolant (check flow). Temperature control has shut down. | | [F1 ER 09<< | bad command>>] | | | Syntax error on a preceding command where < <bad command="">> is the command that caused the syntax error.</bad> | | [F1 ER +] | Automatically report errors when they occur. | | [F1 ER -] | Stop automatic error reports. | | | | # 9. Probe Status and Temperature | [F1 PS ?] | Is there an external temperature probe connected? | | |---|--|--| | [F1 PR +] | A probe is connected. | | | [F1 PR -] | No probe is connected. | | | [F1 PS +] | Enable probe status to be sent automatically when a probe is installed or removed. This is the default. | | | [F1 PS -] | Disable automatic sending of probe status. | | | [F1 PT ?] | What is the current probe temperature? | | | [F1 PT +3] | Periodically report the probe temperature every 3 seconds. | | | [F1 PT 22.3] The current probe temperature is 22.3 degrees. | | | | [F1 PT NA] | Probe temperature is not available. | | | [F1 PT -] | Stop periodic probe temperature reports. | | | [F1 PA S 0.5] | Set the increment for automatic reporting of the probe temperature to 0.5 degrees during a ramp. (Increment must be positive, without sign in tenths between 0.1 and 9.9 degrees, and will work for ramps going up or down.) | | | [F1 PA +] | Start automatic reporting of probe temperature every temperature increment (set by the command above). | | | [F1 PT 30.5] The current probe temperature is 30.5 degrees. | | | | [F1 PA -] | Stop automatic reporting of probe temperature every temperature increment. | | | [F1 PX +] | Change probe temperature returned to a precision of 0.01 degree. | | # 10. Temperature Ramping | [F1 RR S 2.10] | Set the ramp rate to 2.10 °C/minute. | |----------------|--------------------------------------| | [F1 RR ?] | What is the current ramp rate? | | [F1 RR 2.10 | Current ramp rate is 2.10 °C/minute. | For the following three commands, there are no corresponding reference commands ([R1...], see command class 13). | [F1 TL +] Ramp the sample and reference identic | ally. | |---|-------| |---|-------| [F1 TL -] Ramp the sample while the reference remains stable. [F1 TL 0] Ramp the sample and reference independently. The default is to ramp the sample while the reference remains stable. Ramping both the sample and reference at different rates or to different target temperatures (see below) is not possible. # To Ramp the temperature: 1. equilibrate at the starting temperature, - 2. set the ramp rate, - 3. set a new target temperature (command class 5). The target temperature may be above or below the current temperature; as soon as it is set, the ramp will begin, up or down, to that new target. After reaching the target, the controller will hold at that temperature. At any time a new ramp rate and target temperature can be set to start a new ramp. Once you are done, set the ramp rate to 0. Otherwise, setting a new target temperature later will initiate a ramp to that target temperature. #### Notes: The minimum settable ramp rate is 0.01 °C/minute. For higher ramp settings, the observed rate may be lower than that calculated from RT and RS or it may be nonlinear over part of the temperature range because the maximum possible rate of heating or cooling is limited (and dependent on the ramp direction as well as on the temperature). When the ramping process is completed the controller will send a response of the form [F1 TT #] as a notification of the end of the ramp. This response can be blocked at any time by previously sending the command [F1 TT -] (see command class 5). # 11. Heat Exchanger Temperature | What is the high temperature limit for the heat exchanger? | |--| | The heat exchanger high temperature limit is 60 °C. | | What is the current temperature of the heat exchanger? | | The current heat exchanger temperature is 39 °C. | | Start periodic heat exchanger temperature reports every 3 seconds. | | Stop periodic heat exchanger temperature reports. | | | # 12. Cell Changing These commands will have an effect only for a sample holder with multiple cuvette positions. | [F2 DI] | Device initialize: move to home position. | |-----------|---| | [F2 PI] | Device initialize: move to home position and reply when done. | | [F2 DL 1] | Device is finished moving. (Original reply was OK rather than DL 1) | | [F2 DL 3] | Device locate: move to position 3. (Device should be initialized prior to using this command for the first time.) | | [F2 PI] | Device initialize: move to home, then to position 1 and reply when done. | | [F2 DL 1] | Device is in position 1. | | | | | [F2 PL 4] | Device locate: move to position 4 and reply when done. (Device should be initialized prior to using this command for the first time.) | |-------------|---| | [F2 DL 4] | Device is now in position 4. | | [F2 DD 400] | Set speed to 400 (acceptable range 100 – 900, with a default of 500). | # 13. Reference Cuvette These commands will have an effect only for systems with two independently-controlled sample holders. To control and monitor the temperature and status of the reference cuvette using a Dual Temperature Controller, use any commands in classes 3-8, 10 and 11, substituting R1 for F1. There are no corresponding [R1 ...] commands for command classes 1, 2, 9 and 12. If you wish to ramp the temperature of the reference and sample cuvettes together, please note the linking command, [F1 TL +], in command class 10. # **15. Control of Automatic Reports** The TC 1 can be controlled manually using the buttons and the display on the front. When a computer program is in use, the TC 1 will automatically send reports to the program whenever a manual change has been made. The commands in this section are intended to allow the program to prevent the TC 1 from sending those automatic reports. | [F1 XX R(+/-)] | Stop (R-) or start (R+) reporting <u>all</u> manual changes, including those starting with [R1 and [F2. | |----------------|---| | | By replacing the XX with individual command codes, a program can selectively stop or start reporting of manual changes. | | [F1 SS R-] | Stop reporting manual changes for the sample stirrer. | | [F1 TC R-] | Stop reporting manual changes for the sample temperature control. | | [F1 TT R-] | Stop reporting manual changes for the sample target temperature. | | [F1 PR R-] | Stop reporting manual changes for the external probe connection. | | [F1 RR R-] | Stop reporting manual changes for the sample ramp rate. | | [F2 PL R-] | Stop reporting manual changes for the sample position. | | [R1 SS R-] | Stop reporting manual changes for the reference stirrer. | | [R1 TC R-] | Stop reporting manual changes for the reference temperature control. | | [R1 TT R-] | Stop reporting manual changes for the reference target temperature. | |------------|---| | [R1 RR R-] | Stop reporting manual changes for the reference ramp |